
Introduction to PyTorch
Jianan Zhao

Mila - Quebec AI Institute

Email: jianan.zhao@ mila.quebec

Contributors: Jiarui Lu, Meng Qu, Zhaocheng Zhu, Louis-Pascal Xhonneux, Shengchao Liu and Andreea Deac

Content

• Part I: Pytorch Basics
• Idea of deep learning

• Pytorch Tensor

• Tensor Operations

• Part II: Deep Learning Pipeline
• A General DL Pipeline

• An Image Classification Example

• Suggestions on Debugging

Part I: PyTorch basics

• Idea of deep learning

• A fundamental data structure: Tensor

• Training through auto-gradient

Why deep learning frameworks?

• DL Frameworks can help us
• build neural networks without annoying math

• reduce development efforts on standard modules

• accelerate training with GPUs or distributed training

• e.g. You can apply standard models to your own dataset with in ~10
lines of Python code

• Also, most open source projects are based on these frameworks

2012

More than 3000 lines

Today

About 50 lines

How powerful are deep learning frameworks?

Popular deep learning frameworks

Which framework to use?

• high performance

• good distributed & large-scale training

• great for industrial deployment

• difficult to get started with

• difficult to debug

• similar to native Python logic

• easy to get start with

• easy to debug

• rapid prototyping and research

• bad support of large-scale training

• write bad performance code unintentionally

In this class

• We will focus on PyTorch
• PyTorch is “pythonic” in its style

• PyTorch is opensource backed by Facebook

• It provides us with Tensors, Autodifferentiation, and functions
commonly used in Deep Learning models.

The goal of (supervised) deep learning

• Transform data from one representation to another

• Example 1: Image Classification
• Input: images

• Output: image labels

• Example 2: Sentence Regression
• Input: item reviews

• Output: corresponding ratings

Workflow of deep learning

Workflow of deep learning

Workflow of deep learning

• Installation

• Libraries for Python

• Data preparation

• Know how PyTorch stores data / what the data look like

• Split the data into train/valid/test

• Model preparation

• Model training

• Define loss function

• Choose optimization method

• Train the model on training data

• Model evaluation

• Evaluate the model on test data

Ready, steady, go

• We will learn how to use PyTorch to build and train Neural Networks

The first part of the notebook: Collab Notebook

https://colab.research.google.com/drive/18eGdGZ1x6jQ47l-VgTmPvxPzIDA8KYSA?usp=sharing
https://colab.research.google.com/drive/1-pCDTNpRGDvQdXUEsoHtYuyl0WgceHEj?usp=sharing

Installation

• On your laptop go to https://pytorch.org/get-started/locally/

• Use the stable build, your OS, either Pip or Conda, and the cuda version you
have if you have a Nvidia GPU in your laptop

• On Google Colab
• Faster training with a GPU!

• Enable it in Runtime -> Change Runtime Type

Installation

• Let’s check if they are installed properly.

• If nothing complains, then you are ready to go.

• To check if GPU acceleration is available,

• Note this doesn’t necessarily mean everything runs on GPU by default!

>>> import torch
>>> import torchvision

>>> torch.cuda.is_avaiable()

Part I: PyTorch basics

• Idea of deep learning

• A fundamental data structure: Tensor

• Training through auto-gradient

Data structure for representations

• Deep learning relies heavily on Linear Algebra

• Linear algebra uses tensors (e.g. 1-d tensor is a vector, 2-d tensor
is a matrix)

• PyTorch (and most deep learning frameworks), thus uses tensors
(also called N-dimensional arrays).

What is a tensor?

• Two different understandings:
• Generalization of vectors and matrices to an arbitrary number of dimensions

• Multidimensional arrays

Tensors are powerful for data representations
Examples

• 1. Tabular data:
• Two-dimensional tensors (matrices)

Tensors are powerful for data representations

• 2. Time-series data:
• Three-dimensional tensors

Tensors are powerful for data representations

• 3. Images:
• Three-dimensional tensors

Tensors are powerful for data representations

• 4. Texts:
• As one-dimensional integer tensors

• As two-dimensional float tensors (embeddings)

The fat cat sat on a mat
0 298 81 641 9 1 109

The fat cat sat on a mat

0.2
0.3
1.8

1.2
0.6
1.7

2.6
1.5
0.3

……
……
……

Basic tensor operations

• A real example of images

!wget https://upload.wikimedia.org/wikipedia/en/7/7d/Lenna_%28test_image%29.png
-O lenna.jpg
>>> np_image = np.array(Image.open("lenna.png"))
>>> image = torch.as_tensor(np_image)
>>> plt.imshow(image)

channel

width

height

>>> from PIL import Image

Basic tensor operations

• 1. Tensor creation
• From Python lists or Numpy arrays

• Tensors of a given size

• Special tensors

>>> torch.tensor([[0.1, 1.2], [2.2, 3.1], [4.9, 5.2]])

>>> torch.tensor(np.array([[0.1, 1.2], [2.2, 3.1], [4.9, 5.2]]))

tensor([[0.1000, 1.2000],
[2.2000, 3.1000],
[4.9000, 5.2000]])

>>> torch.zeros(2,3) >>> torch.ones(2,3) >>> torch.eye(3)

tensor([[0., 0., 0.], tensor([[1., 1., 1.], tensor([[1., 0., 0.],
[0., 0., 0.]]) [1., 1., 1.]]) [0., 1., 0.],

[0., 0., 1.]])

>>> torch.tensor(2,3,4)

Basic tensor operations

• 2. Tensor properties
• Shape

• Data type

• Number of dimensions

>>> x.shape

x = tensor([[0.1000, 1.2000],
[2.2000, 3.1000],
[4.9000, 5.2000]])

>>> x.size() torch.Size([3, 2])

>>> x.dtype >>> x.type() torch.float32

>>> x.ndim 2

Basic tensor operations

• By convention
• dimension refers to an axis of the tensor

• size refers to the length of an axis in the tensor

• index refers to a specific coordinate in the tensor

width

height

channel

>>> print(image.shape)
>>> print(image.dtype)
>>> print(image.ndim)

Basic tensor operations

• 3. Tensor type transformation
• Data type transformation

• Transformation between GPU and CPU (to be revisited)

• Transform a tensor to Numpy arrays

>>> x = x.int()

>>> x = x.cuda() >>> x = x.cpu()

>>> x = x.numpy()

>>> x = x.float() >>> x = x.double()

>>> x = x.data.numpy()

Tensor Device: on CPU or GPU

• There are generally two types of devices for deep learning

• CPU: Skilled professor for serial complex tasks

• GPU: Primary school students good at parallel simple tasks

• Tensor computation happens on either device

Tensor Device: on CPU or GPU

• Note that any calculation requires tensors on the exact SAME device

• By default, a tensor is created on CPU

• Use .cuda() and .cpu() to move to devices

Tensor Device: on CPU or GPU

• In practice, we use:

Basic tensor operations

• 4. Tensor indexing
• Get an element

• Get a column

• Get rows

x = tensor([[1., 2.],
[3., 4.],
[5., 6.]])

>>> x[0, 1] tensor(2.)

>>> x[2, :] tensor([5., 6.])

>>> x[:, 0] tensor([1., 3., 5.])

>>> x[1:3, :] tensor([[3., 4.], [5., 6.]])

• Get a row (the colon “:” stands for all elements)

Basic tensor operations

• Operations on tensors are similar to their matrix counterparts

512×512×3

• Slice over the second axis (width axis)

>>> plt.imshow(image[:, :256, :])

512×256×3

See example in Notebook

Basic tensor operations

• Practice: How can we obtain the upper half of the image?

Expected Output

Basic tensor operations

• 5. Changing tensor dimensions
• Tensor reshaping

• Tensor squeezing and unsqueezing

• Expansion

x = tensor([[1., 2.],
[3., 4.],
[5., 6.]])

>>> x.reshape(6) >>> x.view(6) tensor([1., 2., 3., 4., 5., 6.])

>>> torch.unsqueeze(x, 0) >>> torch.squeeze(x, 0)

>>> x.expand(3, 2, 4) >>> x.repeat(3, 2, 4)

See example in Notebook

See example in Notebook

Basic tensor operations

• Extend a tensor

>>> batch = image.unsqueeze(0).repeat(3, 1, 1, 1)
>>> plot(batch)

512×512×3 3×512×512×3

• Unsqueeze creates a new axis with size 1 at the specific dimension

See example in Notebook

Basic tensor operations

• 6. Element-wise operations
• Addition, subtraction, multiplication and division

• Exponential, logarithm, power

x = tensor([1., 2., 3.])

>>> x + 3 tensor([4., 5., 6.])

>>> x.exp() tensor([2.7183, 7.3891, 20.0855])

>>> x.log() tensor([0.0000, 0.6931, 1.0986])

>>> x.pow(2) tensor([1., 4., 9.])

Basic tensor operations

• 6. A word about broadcasting
• Addition, subtraction, multiplication and division

• Both commands work, because PyTorch will try it’s best to broadcast shapes
for common operators such as addition (+), multiplication (*), etc

y = tensor([[1., 2.],[3., 4.]])

>>> x + 3 tensor([4., 5., 6.])

>>> x + x tensor([2., 4., 6.])

x = tensor([1., 2., 3.])

>>> y + x Error, because the shapes (3,) and (2,2) cannot be broadcast

z = tensor([[1., 2.]])

>>> y + z

tensor([[2., 3.],[5., 6.]])>>> y + z.t()

tensor([[2., 4.],[4., 6.]])

Basic tensor operations

• 7. Max/min/sum/mean
• Overall max/min/sum/mean

• Max/min/sum/mean on a specific axis

>>> x.min() tensor(1.)

x = tensor([[1., 2.],
[3., 4.],
[5., 6.]])

>>> x.sum()

>>> x.mean()

tensor(21.)

tensor(3.5)

>>> x.sum(dim=0) tensor([9., 12.])

>>> x.sum(dim=1) tensor([3., 7., 11.])

See example in Notebook

Basic tensor operations

• 8. Dot product and matrix multiplication
• Dot product

• Matrix multiplication

a = tensor([1., 2., 3.]) b = tensor([4., 5., 6.])

>>> torch.dot(a, b) 32

a = tensor([[1., 2.],
[3., 4.]])

b = tensor([[5., 6.],
[7., 8.]])

>>> torch.mm(a, b) tensor([[19., 22.],
[43., 50.]])

Basic tensor operations

• 9. Commonly-used tensor operations in PyTorch

torch.t torch.transpose

torch.cat torch.stack torch.chunk

torch.Tensor.view torch.Tensor.reshape torch.Tensor.expand

torch.squeeze torch.unsqueeze

torch.unbind

torch.min torch.max torch.sum torch.mean

torch.eq torch.ne torch.mm torch.bmm

torch.index_select torch.masked_select torch.Tensor.masked_fill_

torch.gather torch.Tensor.scatter_

Basic tensor operations

• 9. Commonly-used tensor operations in PyTorch
torch.t torch.cat

Basic tensor operations

• Practice:

Training through auto-gradient

• How to train a deep learning model?
// Forward pass to make a prediction
• Convert input into floating-point numbers

• Use deep learning models to do transformation
• A sequence of layers and intermediate representations

• Convert last representations into output

// Define a loss function
• Compute a scalar to measure the difference between predictions and targets

// Model learning

• Update model parameters

Training through auto-gradient

• How to update model parameters?
• Gradient descent

Training through auto-gradient

• Deep Learning book Chapter 6, computation graph example

Each arrow is differentiable!!!

DL framework avoids manual
gradient computation with auto-
gradient!

Training through auto-gradient

• PyTorch’s autograd: backpropagate all things
• Require gradients for a tensor

• Compute a scalar loss ℒ

• Compute the gradient

• Print the gradient

>>> w = torch.tensor([2.0], requires_grad=True)

>>> L = f(w)

>>> L.backward()

>>> print(w.grad)

>>> torch.autograd.grad(outputs=L, inputs=w)[0]

• *Or compute using

Training through auto-gradient

• Practice:

• Compute the derivative of

Training through auto-gradient

• Practice:

• Compute the derivative of

Break time!

Pytorch Part II:
Deep Learning Pipeline

Code: Collab Notebook

https://colab.research.google.com/drive/1-pCDTNpRGDvQdXUEsoHtYuyl0WgceHEj?usp=sharing

Content

• 1 General Pipeline: main components

• 2 Example 1: Iris Classification

• 3 Example 2: Image Classification

• Practice: Model Capacity

• Practice: Focal Loss

• 4 Coding suggestions

1 General Pipeline

• Dataset

• Model

• Train model (optimizer, loss function)

• Test/Evaluate model

1 General Pipeline

• Dataset

• Model

• Train model (optimizer, loss function)

• Test/Evaluate model

1 General Pipeline

• Dataset

• Model

• Train model (optimizer, loss function)

• Test/Evaluate model

1 General Pipeline

• Dataset

• Model

• Train model (optimizer, loss function)

• Test/Evaluate model

1 General Pipeline

• Dataset

• Model

• Train model (optimizer, loss function)

• Test/Evaluate model

2 Example: Iris Classification

2.1 Data preparation

Iris: 150 samples

• each has four features (sepal length, sepal width, petal length,

petal width)

• each belongs to one of the three classes/types of Iris plant

(Setosa, Versicolour, Virginica)

2.1 Data preparation

2.2 Linear model + gradient descent

2.2 Linear model + gradient descent

2.2 Linear model + gradient descent

2.2 Linear model + gradient descent

2.2 Linear model + gradient descent

• RMSprop: a self-adaptive optimizer

• Adam: a self-adaptive optimizer
adaptive gradient and lr

• A wide range of optimizers

• SGD: the classical optimizer

adaptive gradient

Loss functions

• Loss functions are also non-parametric layers in PyTorch

2.3 Customize models

• Basic recipe for customizing a model
1. Define the modules in __init__

2. Define the forward function

3. Define the backward function

• Step 1 let the framework know what to train.

• Step 2 let the framework know what the model is.

• DL frameworks will automatically infer step 3 from step 2 (aka. autograd)

Pytorch takes care of it :)

2.3 Customize models

2.3 Customize models

• In the MLP example, the parameters are two linear layers

• Here nn.Linear is a convenient interface to define all
the parameters within a linear layer

>>> class MLP(nn.Module):
>>> def init (self, input_dim, hidden_dim,
output_dim):
>>> super(MLP, self). init ()
>>> self.fc1 = nn.Linear(input_dim, hidden_dim)
>>> self.fc2 = nn.Linear(hidden_dim, output_dim)

input
dim

hidden
dim

output
dim

Customize models

• Let's see how to put these ingredients into implementation
• Inherit a class from nn.Module

• Parameters are defined in init ()

• Forward function is defined as forward()

>>> class MyModel(nn.Module):

def init (self, ...):
super(MLP, self). init ()
here are parameter definitions
self.xxx = ...

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

def forward(self, ...):
here is the forward function
return ...

Customize models

• self.fc1 and self.fc2 are called as functions, i.e. linear transformation

• F.relu and F.softmax are non-parameteric functions
• They have no trainable parameters
• We don't need to define them in init (), but it’s good practice to
generally do so for all functions in F (especially for dropout layer)

• Forward function of MLP

• Very similar to NumPy

>>> class MLP(nn.Module):
>>>
>>>
>>>
>>>

>>>

def forward(self, input):
input = input.flatten(1)
hidden = F.relu(self.fc1(input))
output = F.softmax(self.fc2(hidden), dim=-1)
return output

>>> import torch.nn.functional as F

Customize models

• nn.Sequential is a convenient wrapper for multiple layers

• layers are applied in their definition order

>>> class MLP(nn.Module):
>>>
>>>
>>>

def init (self, input_dim, hidden_dim, output_dim):
super(MLP, self). init ()
self.model = nn.Sequential(

nn.Linear(input_dim, hidden_dim),
nn.Linear(hidden_dim, output_dim)

>>>
)

>>>
>>>

def forward(self, input):
input = input.flatten(1)

>>> output = F.softmax(self.model(input), dim=-1)
>>> return output

Common building blocks

• Parametric layers
• Linear layer (aka. fully connected / dense layer)

nn.Linear(in_features, out_features, bias=True)

• Convolution layer
nn.Conv2d(in_channels, out_channels, kernel_size, stride=1)

Common building blocks

• Parametric layers
• Recurrent layer (multi-layer)

nn.LSTM(input_size, hidden_size, num_layers=1, bias=True)

• Embedding layer

nn.Embedding(num_embedding, embedding_dim, max_norm=None, norm_type=2.0)

embedding
index

Common building blocks

• Non-parametric layers
• Activation function

F.relu(input)
F.sigmoid(input)
F.tanh(input)
F.softmax(input, dim=None)

• Pooling function

F.avg_pool2d(kernel_size, stride=None)

F.max_pool2d(kernel_size, stride=None)

• Dropout layer
nn.Dropout(p=0.5)
F.dropout(input, p=0.5, training=True) Not recommended!

ReLU

sigmoid

tanh

2.4 Mini-Batch (stochastic) gradient descent

2.4 Mini-Batch (stochastic) gradient descent

2.4 Mini-Batch (stochastic) gradient descent

2.4 Mini-Batch (stochastic) gradient descent

2.4 Mini-Batch (stochastic) gradient descent

2.4 Mini-Batch (stochastic) gradient descent

Any examples?

2.4 Mini-Batch (stochastic) gradient descent

2.4 Mini-Batch (stochastic) gradient descent

3 Example 2: Image Classification

• Apply the pipeline to different datasets and models

• Practice on model capacity and focal loss

General Pipeline (review)

• Dataset

• Model

• Train model (optimizer, loss function)

• Test/Evaluate model

3 Example 2: Image Classification

• Same pipeline

• Different Dataset

• We use datasets provided by torchvision

• Different Model

CIFAR10

• 32x32 color images of 10 classes

3 Example 2: Image Classification

• Same pipeline

• Different Dataset

• Different Model: 2-layer CNN as feature layers + 2-layer-MLP as classifier

Model capacity

• Capacity: How powerful / complex a model is

Low capacity
Too simple to

explain the
observation

High capacity
Too good to be

true

Appropriate capacity

Model capacity

• Capacity is determined by
• Model architecture

• Number of learnable parameters

• Regularization / Dropout / Early stopping

• ……

Convolution

28*28*128

Convolution

28*28*32

Convolution

28*28*128

Model capacity

• We can obtain #parameter by

• ResNet18 has ~10M parameters

• GPT-3 has up to 175B parameters.

• Comparing #parameter across different architectures may not be reliable

>>> sum(np.prod(param.shape) for param in net.module_.parameters())

Model capacity

• Scaling Law

• Comparing #parameter across different architectures may not be reliable

https://arxiv.org/abs/2001.08361

Practice: Model Capacity

• Explore different model capacity

• Example 1: #hidden units in “classifier”, e.g. 16, 64, 256, 1024, 4096

• Example 2: Add or remove “convolution layers”

• Example 3: Modify classifier with more regularization

• Other practices

• Change dropout ratio

• Increase and decrease epochs

• Adding / removing data samples

• Change optimizer

• What is the best performance you can get?

Practice: Focal Loss
• Focal Loss is defined as:

• Hint 1: Use F.log_softmax to get log-probabilities with numerical stability.

• then calculate p with log(p).exp()

• Hint 2: Use torch.gather to obatin pt from the predicted distribution

https://arxiv.org/abs/1708.02002

Practice: Focal Loss
• Expected Output

Other Practices

• Change dropout ratio

• Increase and decrease epochs

• Adding / removing data samples

• Change learning rate / learning rate scheduler

Debug models

• Only 10% of programming is coding. The other 90% is debugging.
• Would be better if we are aware of common mistakes!

• General suggestions

• Shape errors

• Model errors

• Model capacity

• Implementation details

General suggestions

• Figure out where the bug is. A recommended order is

• Check whether the code can run (-> e.g. shape errors)
• Check the evaluation code
• Check the ground truth
• Check optimizer and learning rate
• Check model errors
• Check model capacity

Shape errors

• Shape errors are the most common reason if the code can't run

• We can locate the error layer by the hint in the output

RuntimeError Traceback (most recent call last)
<ipython-input-24-036a79cd99d7> in <module>()

6 device="cuda"
7)

----> 8 net.fit(train.data.to(torch.float32) / 255.0, train.targets)

/usr/local/lib/python3.6/dist-packages/torch/nn/functional.py in linear(input, weight, bias)
1368
1369

-> 1370
1371
1372

if input.dim() == 2 and bias is not None:
fused op is marginally faster
ret = torch.addmm(bias, input, weight.t())

else:
output = input.matmul(weight.t())

RuntimeError: size mismatch, m1: [128 x 128], m2: [1 x 10] at THCTensorMathBlas.cu:290

Shape errors

• Some typical shape errors

• It means we have the wrong tensor dimension

• We should reshape the input with tensor.view or tensor.reshape

• It means we have the wrong size

• We should check both definitions of the layer and the input data shape

RuntimeError: Expected 4-dimensional input for 4-dimensional weight 64 3 7 7,
but got 2-dimensional input of size [128, 2352] instead

RuntimeError: size mismatch, m1: [128 x 784], m2: [128 x 10]

Model errors

• Model errors are unreasonable model design
• They may cause phenomenon like gradient vanishing or gradient explosion

• They can pass all assertions and thus are hard to find

• When shall we think of model errors?
• Training diverge or converge badly

• Tuning optimizer and learning rate doesn't help

Model errors

• Common reasons for model errors
• Consecutive transformation layers

x = self.fc2(self.fc1(x))

• Consecutive activation layers
x = F.sigmoid(F.sigmoid(x))

• Typecast
x = torch.ones(..., dtype=torch.long)
x = x / x.sum() # integer division

gradient explode

gradient vanish

x = x / x.sum().float() # float division

unintended results

7 / 3 leads to 2 instead of 2.333

Model errors

• Common reasons for model errors
• Incorrect position of normalization layers

• Incorrect last activation layer

• ……

• Too difficult to remember? Mnemonic: T(B)A
• Transformation

• Batch Normalization (optional)

• Activation

Convolution

Batch Norm

ReLU

Linear

Softmax

T

B

A

T

A

to be announced

Model capacity

• Tips for tuning capacity. A recommend order is

1. Choose an architecture
2. Increase the number of hidden units if training is bad

3. Add regularization if training is good but validation is bad

Other details

• Normalizing the input before you go

• Usually it's better to use an input scale around 1

• Balance different categories (50% pos v.s. 50% neg)

• Otherwise neural networks tend to guess the most frequent category
• Like something what we do for multiple choice questions :)

• A good practice is to reweight each category by the reciprocal of its frequency

>>> model.fit(train.data.to(torch.float32) / 255.0, train.targets)

Other details

• Model initialization

• Implicitly carried out in any of these lines

• Remember to re-initialize our model every trial

>>> mlp = MLP()

>>> resnet18 = torchvision.models.resnet18()

Other details

• Random seed matters (sometimes)
• Model initialization

• Data loading order

• Some situations may not be reproduced when using a different random seed

• Fix a random seed

>>> seed = 123
>>> torch.random.manual_seed(seed)
>>> torch.cuda.manual_seed_all(seed)

General suggestions

• Figure out where the bug is. A recommended order is

• Check whether the code can run (-> e.g. shape errors)
• Check the evaluation code
• Check the ground truth
• Check optimizer and learning rate
• Check model errors
• Check model capacity

Fast development: Rule of thumb

• Start with a small dataset and a short training epoch
• Try different prototypes

• Observe and find the best prototype

• Move to the full dataset
• Try some variants of the best prototype

• Find the best model

• Increase to a long training epoch

Summary

• DL Frameworks are excellent helper for building own neural networks

• Tons of standard models / datasets are available in PyTorch

• Use GPU to speedup your training time by >1 magnitude

• Modify the standard ML pipeline we provided for your own need

• Check debug suggestions if powerful models don't work as expected

• Get your hands dirty and gain experiences.

Further readings

• Python / Numpy / Matplotlib tutorial
• http://cs231n.github.io/python-numpy-tutorial/

• A simple neural network from scratch
• https://medium.com/dair-ai/a-simple-neural-network-from-scratch-with-pytorch-and-google-

colab-c7f3830618e0

• Language classification
• https://colab.research.google.com/github/pytorch/tutorials/blob/gh-

pages/_downloads/char_rnn_classification_tutorial.ipynb

• Dive into Deep Learning (PyTorch version)
• https://github.com/dsgiitr/d2l-pytorch

http://cs231n.github.io/python-numpy-tutorial/

Enjoy the PyTorch Journey!

	Slide 1: Introduction to PyTorch
	Slide 2: Content
	Slide 3: Part I: PyTorch basics
	Slide 4
	Slide 5: Why deep learning frameworks?
	Slide 6: How powerful are deep learning frameworks?
	Slide 7: Popular deep learning frameworks
	Slide 8: Which framework to use?
	Slide 9: In this class
	Slide 10: The goal of (supervised) deep learning
	Slide 11: Workflow of deep learning
	Slide 12: Workflow of deep learning
	Slide 13: Workflow of deep learning
	Slide 14: Ready, steady, go
	Slide 15: Installation
	Slide 16: Installation
	Slide 17: Part I: PyTorch basics
	Slide 18: Data structure for representations
	Slide 19: What is a tensor?
	Slide 20: Tensors are powerful for data representations
	Slide 21: Tensors are powerful for data representations
	Slide 22: Tensors are powerful for data representations
	Slide 23: Tensors are powerful for data representations
	Slide 24: Basic tensor operations
	Slide 25: Basic tensor operations
	Slide 26: Basic tensor operations
	Slide 27: Basic tensor operations
	Slide 28: Basic tensor operations
	Slide 29: Tensor Device: on CPU or GPU
	Slide 30: Tensor Device: on CPU or GPU
	Slide 31: Tensor Device: on CPU or GPU
	Slide 32: Basic tensor operations
	Slide 33: Basic tensor operations
	Slide 34: Basic tensor operations
	Slide 35: Basic tensor operations
	Slide 36: Basic tensor operations
	Slide 37: Basic tensor operations
	Slide 38: Basic tensor operations
	Slide 39: Basic tensor operations
	Slide 40: Basic tensor operations
	Slide 41: Basic tensor operations
	Slide 42: Basic tensor operations
	Slide 43: Basic tensor operations
	Slide 45: Training through auto-gradient
	Slide 46: Training through auto-gradient
	Slide 47: Training through auto-gradient
	Slide 48: Training through auto-gradient
	Slide 49: Training through auto-gradient
	Slide 50: Training through auto-gradient
	Slide 51: Break time!
	Slide 52: Pytorch Part II: Deep Learning Pipeline
	Slide 53: Content
	Slide 54: 1 General Pipeline
	Slide 55: 1 General Pipeline
	Slide 56: 1 General Pipeline
	Slide 57: 1 General Pipeline
	Slide 58: 1 General Pipeline
	Slide 59: 2 Example: Iris Classification
	Slide 60: 2.1 Data preparation
	Slide 61: 2.1 Data preparation
	Slide 62: 2.2 Linear model + gradient descent
	Slide 63: 2.2 Linear model + gradient descent
	Slide 64: 2.2 Linear model + gradient descent
	Slide 65: 2.2 Linear model + gradient descent
	Slide 66: 2.2 Linear model + gradient descent
	Slide 67: Loss functions
	Slide 68: 2.3 Customize models
	Slide 69: 2.3 Customize models
	Slide 70: 2.3 Customize models
	Slide 71: Customize models
	Slide 72: Customize models
	Slide 73: Customize models
	Slide 74: Common building blocks
	Slide 75: Common building blocks
	Slide 76: Common building blocks
	Slide 77: 2.4 Mini-Batch (stochastic) gradient descent
	Slide 78: 2.4 Mini-Batch (stochastic) gradient descent
	Slide 79: 2.4 Mini-Batch (stochastic) gradient descent
	Slide 80: 2.4 Mini-Batch (stochastic) gradient descent
	Slide 81: 2.4 Mini-Batch (stochastic) gradient descent
	Slide 82: 2.4 Mini-Batch (stochastic) gradient descent
	Slide 83: 2.4 Mini-Batch (stochastic) gradient descent
	Slide 84: 2.4 Mini-Batch (stochastic) gradient descent
	Slide 85: 3 Example 2: Image Classification
	Slide 86: General Pipeline (review)
	Slide 87: 3 Example 2: Image Classification
	Slide 88: CIFAR10
	Slide 89: 3 Example 2: Image Classification
	Slide 90: Model capacity
	Slide 91: Model capacity
	Slide 92: Model capacity
	Slide 93: Model capacity
	Slide 94: Practice: Model Capacity
	Slide 95: Practice: Focal Loss
	Slide 96: Practice: Focal Loss
	Slide 98: Other Practices
	Slide 99: Debug models
	Slide 100: General suggestions
	Slide 101: Shape errors
	Slide 102: Shape errors
	Slide 103: Model errors
	Slide 104: Model errors
	Slide 105: Model errors
	Slide 106: Model capacity
	Slide 107: Other details
	Slide 108: Other details
	Slide 109: Other details
	Slide 110: General suggestions
	Slide 111: Fast development: Rule of thumb
	Slide 112: Summary
	Slide 113: Further readings
	Slide 114: Enjoy the PyTorch Journey!

